ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

IMPACT OF ARTIFICIAL INTELLIGENCE IN SOLID WASTE MANAGEMENT SYSTEM

¹Dr. Harish. M

¹Assistant Professor, Department of Commerce, Faculty of Science and Humanities, Ramapuram, Chennai India.

²Dr. A. Alamelu Mangai

²Assistant Professor, Department of Commerce, Faculty of Science and Humanities, Ramapuram, Chennai, India.

³Jithin E.S

³Research Scholar, Research and PG Department of Commerce and Tourism, Catholicate College, Pathanamthitta, Affiliated to Mahatma Gandhi university Kottayam, Kerala, India harish588@gmail.com

To Cite this Article

Dr. Harish. M, Dr. A. Alamelu Mangai, Jithin E.S. "IMPACT OF ARTIFICIAL INTELLIGENCE IN SOLID WASTE MANAGEMENT SYSTEM" Musik In Bayern, Vol. 90, Issue 10, Oct 2025, pp 171-179

Article Info

Received: 12-08-2025 Revised: 31-08-2025 Accepted: 27-09-2025 Published: 17-10-2025

ABSTRACT

This study examines how artificial intelligence is transforming municipal and industrial solid waste management. AI—through computer vision, machine learning and optimization algorithms improves waste-sorting accuracy, optimizes collection routes, predicts generation volumes, reduces operational costs, and raises recycling recovery rates. We review recent literature, summarized real-world deployments analyze benefits and limitations, and propose a methodology for evaluating AI interventions in an urban solid waste management system.

Key words: Solid waste management, Artificial intelligence

1.1 INTRODUCTION

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

Municipal solid waste (MSW) generation has been increasing at an alarming rate across the globe, primarily due to rapid urbanization, industrialization, and changing consumption patterns. This escalating trend has put enormous pressure on traditional solid waste management (SWM) systems, which are often plagued by inefficiencies such as improper segregation, contamination of recyclable materials, irregular and poorly optimized collection routes, limited treatment facilities, hazardous informal handling practices, and shrinking landfill capacities. As a result, municipalities face rising operational costs, environmental degradation, and public health risks. In this context, Artificial Intelligence has emerged as a transformative solution, offering datadriven approaches to overcome these longstanding challenges. AI-powered technologies including computer vision, machine learning, robotics, and predictive analytics—are being employed to automate critical tasks such as waste sorting, monitoring of collection bins, route optimization for waste collection fleets, and forecasting of waste generation patterns. Moreover, AI aids in strategic decision-making processes like landfill site selection and recycling policy design, thereby making waste systems smarter, more resilient, and sustainable. Recent research surveys and pilot projects have underscored the growing role of AI across the waste management value chain, with successful commercial deployments by companies such as AMP Robotics, Zen Robotics, and Tomra in material recovery facilities, where AI-enabled robotic sorters have significantly improved the efficiency and quality of recyclable recovery. Thus, the integration of AI into SWM not only addresses operational inefficiencies but also paves the way for sustainable urban development and circular economy practices.

1.2 LITERATURE REVIEW

A Lakhouit -2025 This review explores the transformative impact of artificial intelligence (AI) and the Internet of Things on urban solid waste management, focusing on their potential to enhance the processes of waste collection, sorting, and recycling. With urban populations on the rise and waste generation rapidly increasing, cities face critical challenges to environmental sustainability and public health. The integration of IoT-based smart waste management enables municipalities to utilize real-time data to analyze waste flow, predict generation trends, and improve operational efficiency.

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

A Samadhiya et.al 2025 -Rapid urbanization, economic expansion, and population growth have increased waste generation in many nations worldwide. Research on municipal waste management (MWM) is moving towards new frontiers in efficiency and applicability due to the growing amount of data being collected in these systems and the convergence of various technological applications; artificial intelligence (AI) techniques present novel and creative alternatives for MWM. Even though much research has been conducted in this field, relatively few review studies assess how advancements in AI techniques can contribute to the sustainable advancement of MWM systems. Furthermore, there are discrepancies and a dearth of knowledge regarding the operation of AI-based techniques in MWM.

A Idrissi et.al, 2025- Solid waste management poses a major global challenge with significant environmental implications. The integration of artificial intelligence (AI) and information and communication technology (ICT) have emerged as a promising solution to revolutionize waste management practices. This systematic literature review, which examines the application of AI and ICT in SWM over the past 5 years (2018–2023) and analyses 152 research papers, explores their integration at various stages. In the production phase, AI-driven predictive models have outperformed traditional methods, improving waste forecasting accuracy and facilitating recycling initiatives. In waste collection, AI and ICT enable real-time route optimization, dynamic scheduling, and sensor-based monitoring, enhancing service delivery while reducing operational costs.

1.3 MEASURED & EXPECTED IMPACTS OF AI IN SOLID WASTE MANAGEMENT

The integration of Artificial Intelligence into solid waste management has demonstrated significant measurable improvements in operational efficiency, recycling effectiveness, and environmental sustainability, while also presenting certain expected long-term benefits.

1. **Operational Efficiency**: Measured impacts from pilot studies show that AI-enabled smart bins and predictive models reduce unnecessary waste collection trips by 20–40%, saving fuel, labor hours, and maintenance costs. AI-powered route optimization systems have also cut down

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

average collection times and distances traveled by municipal fleets, directly lowering transportation costs. In addition, predictive maintenance of waste vehicles through AI monitoring minimizes breakdowns, ensuring smoother operations.

2. Recycling and Resource Recovery

Robotic AI sorters in material recovery facilities (MRFs) have increased the accuracy and purity of recyclable materials, improving recovery rates by up to 30% compared to manual sorting. By reducing contamination, AI improves the resale value of recyclables such as plastics, glass, and metals, thereby generating additional revenue streams for municipalities and recycling companies. Over the long term, widespread adoption of AI is expected to substantially reduce the volume of waste ending up in landfills.

3. Environmental Benefits

Measured impacts include reduced greenhouse gas emissions due to fewer collection trips and decreased landfill usage. By enabling higher recycling rates, AI helps conserve natural resources and reduces the environmental footprint of raw material extraction and manufacturing. Expected future impacts include the potential for AI-driven circular economy models, where waste streams are continuously monitored and redirected into productive cycles.

4. Public Health and Safety

AI reduces the exposure of human workers to hazardous materials by automating waste sorting and identifying harmful waste (such as medical or electronic waste) with greater accuracy. This not only improves occupational health and safety but also decreases risks of disease spread in densely populated urban areas.

5. Economic and Social Impacts

Municipalities adopting AI systems have reported measurable cost savings in operations and increased revenue from recyclables. Expected long-term impacts include job transformation—while some manual waste-sorting roles may decline, new opportunities in AI system monitoring, data analysis, and robotics maintenance are likely to emerge. This shift requires workforce reskilling and inclusion policies, particularly in regions with large informal waste sectors.

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com

DOI https://doi.org/10.15463/gfbm-mib-2025-476

6. Policy and Governance Impacts

AI-powered monitoring systems have improved regulatory compliance by detecting illegal dumping and improper disposal in real time. Measured impacts include quicker response to violations and cleaner urban environments. Expected impacts involve better evidence-based policymaking, as AI-generated data analytics can guide future investments, infrastructure

planning, and environmental policies.

1.4 ADVANTAGES OF AI IN SOLID WASTE MANAGEMENT

1. Enhanced Efficiency in Waste Collection

Artificial Intelligence makes waste collection more efficient by using predictive models and smart sensors to monitor bin fill levels in real time. Instead of following fixed collection schedules, AI allows municipalities to dispatch trucks only when required, which reduces unnecessary trips, saves fuel, and ensures timely clearance of waste. This intelligent approach

prevents overflowing bins and keeps public spaces cleaner.

2. Improved Recycling and Resource Recovery

AI-powered robotic sorters and computer vision systems can identify and separate different types of waste with higher accuracy than manual methods. This leads to better recovery of recyclables such as plastics, paper, glass, and metals. By reducing contamination in recycling streams, AI increases the quality and market value of recovered materials, thus supporting circular economy

practices and minimizing landfill usage.

3. Cost Reduction and Revenue Generation

By optimizing collection routes, reducing fuel consumption, and automating sorting processes,

AI significantly cuts down operational costs for waste management authorities. At the same time,

the higher recovery of clean recyclables creates opportunities for additional revenue through the

sale of materials to recycling industries. This dual advantage makes AI adoption financially

attractive for municipalities and private companies alike.

4. Environmental Protection

AI contributes to environmental sustainability by lowering greenhouse gas emissions from waste

Page | 175

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

collection vehicles through route optimization and reduced trips. Additionally, improved recycling reduces the dependence on raw materials, thereby conserving natural resources and minimizing the ecological footprint of extraction and manufacturing. Over time, AI-driven waste systems help reduce landfill usage, air pollution, and soil contamination.

5. Better Public Health and Safety

One of the key benefits of AI in SWM is its ability to minimize human exposure to hazardous waste. Automated systems handle tasks such as sorting biomedical, chemical, and electronic waste, reducing health risks for workers who traditionally performed these dangerous jobs. Moreover, AI-powered monitoring systems can quickly detect illegal dumping or improper disposal, ensuring safer and healthier living environments for urban populations.

1.5 CHALLENGES AND LIMITATIONS

1. High Cost of Implementation

One of the biggest challenges in adopting AI in solid waste management is the high initial investment required. Advanced technologies such as smart bins, AI-powered sensors, and robotic sorters are expensive to purchase, install, and maintain. Many municipalities, especially in developing countries, struggle with budget constraints and may find it difficult to justify the costs despite long-term savings.

2. Data Quality and Availability Issues

AI systems rely heavily on large amounts of accurate data to function effectively. In waste management, this means having reliable data on waste generation patterns, bin fill levels, and material compositions. However, in many regions, such data is either incomplete, inconsistent, or not digitized, which limits the effectiveness of AI models. Without high-quality data, predictions and sorting accuracy can be compromised.

3. Integration with Existing Infrastructure

Most cities already have established waste management systems, and introducing AI technologies requires significant changes in infrastructure. Integrating smart bins, real-time monitoring systems, and AI-based routing with old equipment and manual processes can be

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

complex. Resistance from local authorities, technical staff, and waste contractors can also slow down the adoption process.

4. Workforce Displacement and Social Concerns

Automation in waste sorting and collection can reduce the need for manual labor, which may negatively impact workers in the informal waste sector who depend on this livelihood. While AI creates new technical and supervisory roles, a lack of proper training and reskilling opportunities can leave many workers unemployed. This raises social and ethical challenges that need careful policy planning.

5. Privacy and Governance Issues

AI-powered monitoring systems often use cameras and sensors to detect illegal dumping or track waste disposal patterns. While useful, such systems may raise concerns about data privacy and surveillance, especially in residential areas. In addition, a lack of clear regulations and governance frameworks around AI in public services can lead to misuse or mistrust of the technology.

1.6 CONCLUSION

Artificial Intelligence is emerging as a transformative tool in addressing the long-standing challenges of solid waste management. By introducing automation, predictive analytics, and real-time monitoring, AI offers solutions that improve efficiency, reduce costs, enhance recycling rates, and minimize environmental impacts. Applications such as robotic waste sorting, AI-enabled route optimization, and smart bins have already demonstrated measurable improvements in both developed and developing contexts. At the same time, AI reduces human exposure to hazardous waste and creates opportunities for cleaner, safer urban environments.

However, the successful integration of AI into waste systems depends on overcoming certain barriers. High implementation costs, lack of reliable data, infrastructure limitations, and the potential displacement of informal waste workers remain significant concerns. To unlock AI's full potential, governments and municipalities must adopt a balanced approach that includes investment in technology, development of open data systems, workforce reskilling, and the establishment of clear governance frameworks for transparency and privacy.

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

Looking ahead, AI can play a central role in building circular economy practices, where waste is not merely disposed of but re-entered into the production cycle as a valuable resource. With well-designed pilot projects, strong public–private partnerships, and inclusive policies, AI has the capacity to accelerate progress toward sustainable, smart, and resilient waste management systems worldwide. Ultimately, the impact of AI in SWM extends beyond operational efficiency—it represents a shift toward a cleaner environment, healthier societies, and more sustainable urban futures.

REFERENCES

- 1. Tanuja Tiwari, and Pallavi. 2025. "The AI-Powered Cleanup: A Revolution in Solid Waste Management". *International Journal of Environment and Climate Change* 15 (3):481–490.
- Andeobu L, Wibowo S, Grandhi S (2022) Artificial intelligence applications for sustainable solid waste management practices in Australia: a systematic review. Sci Total Environ 834:155389.
- 3. Alqahtani F, Al-Makhadmeh Z, Tolba A, Said W (2020) Internet of things-based urban waste management system for smart cities using a cuckoo search algorithm. Clust Comput 23:1769–1780.
- 4. Babaee Tirkolaee E, Abbasian P, Soltani M, Ghaffarian SA (2019) Developing an applied algorithm for multi-trip vehicle routing problem with time windows in urban waste collection: a case study. Waste Manag Res 37:4–13.
- 5. Amal L, Son LH, Chabchoub H (2018) SGA: spatial gis-based genetic algorithm for route optimization of municipal solid waste collection. Environ Sci Pollut Res 25:27569–27582.
- 6. Brynjolfsson E, Mcafee A (2017) Artificial intelligence, for real. Harvard business review 1: 1–31.
- 7. Gundupalli SP, Hait S, Thakur A (2017) A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag 60:56–74.

ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-476

- 8. Karthikeyan S, Rani GS, Sridevi M, Bhuvaneswari PTV (2017) IoT enabled waste management system using ZigBee network. In: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT): 2182–2187.
- 9. Cao H, Xin Y, Yuan Q (2016) Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Biores Technol 202:158–164.
- 10. Kolekar KA, Hazra T, Chakrabarty SN (2016) A review on prediction of municipal solid waste generation models. Procedia Environ Sci 35:238–244.
- 11. Lakshmi, Refonaa J, Vivek J (2015) Tracking of bio medical waste using global positioning system. In: 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]: 1–5.